Prediction of early unplanned intensive care unit readmission in a UK tertiary care hospital: a cross-sectional machine learning approach
نویسندگان
چکیده
OBJECTIVES Unplanned readmissions to the intensive care unit (ICU) are highly undesirable, increasing variance in care, making resource planning difficult and potentially increasing length of stay and mortality in some settings. Identifying patients who are likely to suffer unplanned ICU readmission could reduce the frequency of this adverse event. SETTING A single academic, tertiary care hospital in the UK. PARTICIPANTS A set of 3326 ICU episodes collected between October 2014 and August 2016. All records were of patients who visited an ICU at some point during their stay. We excluded patients who were ≤16 years of age; visited ICUs other than the general and neurosciences ICU; were missing crucial electronic patient record measurements; or had indeterminate ICU discharge outcomes or very early or extremely late discharge times. After exclusion, 2018 outcome-labelled episodes remained. PRIMARY AND SECONDARY OUTCOME MEASURES Area under the receiver operating characteristic curve (AUROC) for prediction of unplanned ICU readmission or in-hospital death within 48 hours of first ICU discharge. RESULTS In 10-fold cross-validation, an ensemble predictor was trained on data from both the target hospital and the Medical Information Mart for Intensive Care (MIMIC-III) database and tested on the target hospital's data. This predictor discriminated between patients with the unplanned ICU readmission or death outcome and those without this outcome, attaining mean AUROC of 0.7095 (SE 0.0260), superior to the purpose-built Stability and Workload Index for Transfer (SWIFT) score (AUROC=0.6082, SE 0.0249; p=0.014, pairwise t-test). CONCLUSIONS Despite the inherent difficulties, we demonstrate that a novel machine learning algorithm based on transfer learning could achieve good discrimination, over and above that of the treating clinicians or the value added by the SWIFT score. Accurate prediction of unplanned readmission could be used to target resources more efficiently.
منابع مشابه
Unplanned early readmission to the intensive care unit: a case-control study of patient, intensive care and ward-related factors.
The purpose of this study was to identify patient, intensive care and ward-based risk factors for early, unplanned readmission to the intensive care unit. A five-year retrospective case-control study at a tertiary referral teaching hospital of 205 cases readmitted within 72 hours of intensive care unit discharge and 205 controls matched for admission diagnosis and severity of illness was conduc...
متن کاملPredictors associated with unplanned hospital readmission of medical and surgical intensive care unit survivors within 30 days of discharge
Background Reducing the 30-day unplanned hospital readmission rate is a goal for physicians and policymakers in order to improve quality of care. However, data on the readmission rate of critically ill patients in Japan and knowledge of the predictors associated with readmission are lacking. We investigated predictors associated with 30-day rehospitalization for medical and surgical adult patie...
متن کاملComparison of unplanned intensive care unit readmission scores: a prospective cohort study
PURPOSE Early discharge from the intensive care unit (ICU) may constitute a strategy of resource consumption optimization; however, unplanned readmission of hospitalized patients to an ICU is associated with a worse outcome. We aimed to compare the effectiveness of the Stability and Workload Index for Transfer score (SWIFT), Sequential Organ Failure Assessment score (SOFA) and simplified Therap...
متن کاملPrediction of Sepsis Due to Acinetobacter Infection in Neonates Admitted to NICU
Background and Aim: Sepsis is the most important disease in the first 28 days of life and one of the main causes of infant mortality in the intensive care unit. Its definitive diagnosis is possible by performing blood culture. Neonatal sepsis can be a clinical sign of nosocomial infections that are often resistant to antibiotics. Therefore, the purpose of this study was to create and evaluate a...
متن کاملApplicability of a previously validated readmission predictive index in medical patients in Singapore: a retrospective study
BACKGROUND Hospital readmissions are serious and costly events, and readmission rates are considered to be an indicator of quality in health care management. Several models to identify patients at risk of unplanned readmissions have been developed in Western countries, but little is known about their performance in other countries. This paper reports the possible utility of one such model devel...
متن کامل